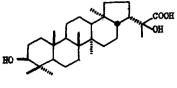
DIACETYLPYXINOL, A TRITERPENE ALCOHOL FROM A LICHEN: PYXINE ENDOCHRYSINA NYL

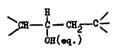
Itiro Yosioka, Hiroshi Yamauchi and Isao Kitagawa

Faculty of Pharmaceutical Sciences, Osaka University

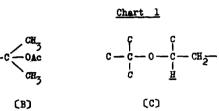
Toyonaka, Osaka, Japan


(Received in Japan 21 July 1969; received in UK for publication 18 September 1969) In the previous communication,¹⁾ we reported the structure of pyxinic acid(I), which was isolated from a lichen: Pyxine endochrysina Nyl. and characteristic by possessing OE function at C-3 of hopane skeleton among the lichen-triterpenoids. Further chemical study on the neutral fraction of the same lichen has led us to isolate a triterpene alcohol named diacetylpyxinol. The present paper deals with the chemical evidence supporting the structure II.

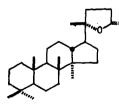
Diacetylpyxinol(II), $C_{34}H_{56}O_6^{(2)}mp.247^{\circ}$, $(\alpha)_{D} +10^{\circ}(CHCl_3)$; $IR(mujol, cm^{-1}):3420$, 1735, 1245, 1235, 1020; $NMR^{3)}$ (100Mc, τ):9.16(s, 2xMe), 9.13, 9.09, 9.01, 8.76, 8.55, 8.48(all s., IMe each), 7.99 (2x Ac), 6.53(1H, sextet, J=2.9 & 6.4 cps.), 5.89(1H, t., J=6.4), 5.48(1H, q., J=6.5 & 8.2), exhibited a positive Libermann-Burchard color test and negative to tetranitromethane. On treatment with 5% KOH-MeOH or LiAlH₄, II gave pyxinol(III), $C_{30}H_{52}O_4$, mp. 225-6°, $(\alpha)_D$ +62.8°(CHCl₃); $IR(ccl_4)$: 3600, 3430, which lacks acetyl function and shows a diamagnetically shifted quartet at 6.73 τ (5.48 in II) and all the C-methyl singlets appearing above 8.70 τ in its NMR spectrum. Acetylation of II with Ac_2O -Py., Ac_2O -NaOAc or Ac_2O -p-TsOH yielded the same triacetate(IV), $C_{36}H_{58}O_7$, mp.180-1°, which was also prepared by acetylation of III with Ac_2O -p-TsOH. These observations suggest that II is a triterpene possessing two acetoxyls (a secondary and a tertiary), one secondary hydroxyl and oxygen function presumably of an ether linkage.


The CrO₃-Py. oxidation of III furnished monoketopyxinol(V), C₃₀H₅₀O₄, mp.184-5[°], and diketopyxinol(VI), C₃₀H₄₈O₄, mp.174-6[°], which were further converted by Huang-Minlon reduction to desoxypyxinol(VII), C₃₀H₅₂O₃, mp.196.5-7.5[°] and didesoxypyxinol(VIII), C₃₀H₅₂O₂, mp.138.5-140[°] respectively.

On the other hand, the similar oxidation converted II to diacetyl-monoketopyximol(IX), $C_{34}H_{54}O_6$, mp.162[°]; IR: 1708, negative to Zimmermann color test.


The prominent fragment ions, tentatively ascribable⁴⁾ to A,B rings of tetra- or penta-cyclic triterpenes, appearing at m/e 249, 189 of IV and 191 of VII, VIII in the mass spectra suggest that

I Pyxinic acid



R== H (m/e 191)

R = 0Ac (m/e 249) $\xrightarrow{-ACOH}$ m/e 189

¥_R³ R² 11 II

~~				
	Rl	R ²	R ³	
11	-0Ac,H	- OH, H	OAc	diacetylpyxinol
111	OH, ·····H	- OH , … H	OH	pyxinol
IV	-0Ac,H	- 0Ac, H	OAc	
v	=0	OH, H	OH	
VI	=0	=0	OB	
VII	щ	- OH, H	OH	
VIII	H ₂	н ⁵	OH	
IX	-0Ac,H	=0	0Ac	
X	¥2	H ₂	OAc	
XI	— OCOFhBr(p) … H	-OCOPhBr(p)	OE	
XIII	-H, OH	—он, …н	OH	triterpene C

())

πı

only one hydroxyl of III locates in A or B ring (Chart 1). A positive Zimmermann color test of V in addition to a characteristic NMR signal pattern at 5.48 $\tau^{(1)}$ of II confines the location of one secondary acetoxyl of II at C-3.

The partial structures in regard to the remaining three oxygen functions of II have been disclosed as follows. A secondary hydroxyl, as the location of which A or B ring is eliminated, may contribute to a partial structure(A) based on the NMR signal pattern at 6.53τ of II. A tertiary acetoxyl of II, on the other hand, may participate in an acetoxy-isopropyl side chain(B) on the basis of the following observations: (i) Two singlets(3H each) at 8.55 and 8.48 τ of II attributable to methyls attached to a carbon having an oxygen function are diamagnetically shifted (above 8.70) in the NMR spectrum of III; (ii) The hydroxyl function of didesoxypyxinol (VIII) (IR:3553) resists the Ac₂O-Py. acetylation under ordinary condition, but is acetylated with Ac₂O-p-TsOH to yield a monoacetate(X), whose NMR spectrum shows two methyl signals at 8.52 τ similarly in II. Finally, as for the ether linkage, only a single proton is concerned to the system as revealed by the NMR signals such as at 6.25τ (1H, t., J=6) in VIII and at 6.09τ (1H, t., J=6.6) in X. Furthermore, the signal patterns corroborate to depict the partial structure as (C).

To elucidate the carbon framework of diacetylpyrinol(II), the X-ray analysis has been performed using a di-p-bromobenzoate(XI) as described in the following paper⁵⁾. The result has enabled us to illustrate the structures of diacetylpyrinol(II) possessing S configuration at C_{20} and all the derivatives as shown in this paper.

In addition, a χ' -lactone, $C_{27}H_{44}O_2$, mp.192-5°; IR(CCl₄): 1775; MMR: six methyls singlets, lacking a signal due to C_{24} -H, obtained by Kiliani oxidation of VIII, is now formulated unambiguously as XII and the base peaks of m/e 143 in the mass spectra of III, VII, and VIII are attributable to the ion as shown (D)⁶.

Diacetylpyxinol(II) is the first example of a dammarane triterpene isolated in the lichen family, and pyxinol corresponds to a C-3 epimer of triterpene C (XIII) from Betula platyphylla var. japonica, which was recently disclosed by Tanaka et al.⁶⁾.

The authors wish to express their cordial thanks to Res. Lab. of Dainippon Pharm. Co. for the elemental analyses.

REFERENCES

- 1) I.Yosioka, A.Matsuda, I.Kitagawa: Tetrahedron Letters, 1966 613.
- 2) Satisfactory analytical values were obtained in all compounds given with chemical formulae.
- 3) Unless mentioned otherwise, the NMR spectra were determined in CDC13 solution at 60Mc using

TMS as an internal standard, and the signals were given in τ values.

- 4) H.Budzikiewicz, J.M.Wilson, C.Djerassi: <u>J.Am.Chem.Soc</u>., <u>85</u> 3688(1963).
- 5) H.Yamauchi, T.Fujiwara, K.Tomita: <u>Tetrahedron Letters</u>, the following paper.
- 6) M.Nagai, N.Tanaka, S.Ichikawa, O.Tanaka: <u>Tetrahedron Letters</u>, <u>1968</u> 4239.